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ABSTRACT

The Cobb-Douglas f neion is widely used in production economics in the

following form: A - AL K , where and along with A are positive constants

that relate the inputs L (-Labor) and K (-Capital) to the amount of output Q.

A variety of supposed alternatives and generalizations have been suggested in

place of the Cobb-Douglas form for use in production economics. These

alternatives and generalizations are here shown to be representable in an

extended Cobb-Douglas form in which A, and 0 are functions of L and K rather

than constants. This extension is then formally related to other general

forms, such as the minimum discrimination information statistic, and used to

explain the successful uses of the Cobb-Douglas function for empirical

applications in many different countries and contexts. , 4
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1.0 Introduction

The Cobb-Douglas function, which made its first appearance in [14]-

may be written in the form

(1.1) Q - AL K

where a and 0 along with A are constants which relate the variables, e.g., the

amounts of inputs L (- Labor) and K (- Capital) to the amount of output Q. This

has been the most extensively used form of function for studying production

behavior in empirical economics and econometrics.

In this paper we shall build on what has already been accomplished by

a straightforward extension to

(1.2) 0 - A(L.K) e(L,K) K (L.K)

in which A, a and 3 are now functions of the inputs with

(1.3) a + 0 - 1

a, >O .

This formulation, as we shall see, makes easy contact wLI a variety of other

disciplines fron whLieh most of the supposedly more get,IrIl alternatives to

production theory may also be accormiodated. Hence noLhing ied be lost.

Consistent also with empirical results from a wide variety of studies, it

leads to certain new relations in the mathematical theory of homogeneous

Lunctions, and it provides access to more general results, such as are

exhibited in C 8 ) and C 11 , from which still further developments may

be effected in mathematics, economics and statistics, and information theory

Tintner et. al. (38] notes a use of this kind of function in economic theory
by Wicksell 42] in 1893 but the use of this function as one of the earliest
(and most successful) examples of anything like a modern econometric study
must certainly be dated from the paper by C. R. Cobb and P. H. Douglas in
[14 ]. See also [1 91 which mst still count as a model for economic-econometric
investiptions and which mst rank very higah in the order of such models.
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as well.

After first delineating same of these possibilities, this paper will

introduce a series of specializing assumptions to tie these more general develop-

ments into known results and relations in empirical and theoretical economics.

These topics will be treated first from the standpoint of optimal production

at the level of the individual firm -- what is sometimes called "intra-firm"

analysis-/-- and then extended to aggregations of firms via efficiency

frontiers and expansion paths at the level of the individual firm. The speciali-

zing assumptions needed to attain them will be clarified en route to these

results, and then they will be interpreted and related to some of the already

extant findings in empirical studies of production.

In the concluding section, a return will then be made to the natural

extension, to more than two factors, for the general formulation, given

above -- which we shall call an "Extended Cobb-Douglas Form" -- and suggestions

will then be supplied on how the results given in this paper can be extended

to developments in other fields besides the ones studied here.

!/See [4], [5) and [6).
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2.0 A 14ev Representation for Homozeneous Functions

To initiate our analysis we now lot x represent a vector of variables

x, iLO .. n and consider the expression

n
(Z~l) hf(x) -Z fixi,

which, by Euler's theorem, always holds when the function f(x) is homogeneous of

degree h with continuous partial derivatives f U a We also consider

n 6L(x)

(2.2) I

Logetlwr with

n

and specify, for any i, that

6 L -6
(2.4) 6L 6

if 6 -.0-1

If we can now choose

(25 i 'hf(x) in

with hf(x) > 0 to satisfy (2.3) then, by direct substitution in (2.2), we can

obtain

(2n i f x f ii/hf(x) fLXi/fx
(26 1(hf(x)) iI-hf(x)

11Cf. Duffin, Peterson and Zener (17], p. 79 This seen convention is also
used in information theory. Cf. , e.g. , Theil [371.
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This is the same hf(x) that holds for (2.1). Hence via the derivation from

(2.2) ve have obtained an apparently new result for homogeneous functions

which we may summarize In a way that makes it immediately pertinent to our

analysis via the following:

Theorem 1: Let hf(x) > 0 where f(x) is a function which is homogeneous of

degree h, and let f(x) have continuous partial derivatives,

then
n 8 i(x)

(2.7) f(x) - A(x) nl (x )
i=1

for all x where f 6ilx)

(2.8) A(x) - I n (
h =1

with

(2.9) (x) = =
i hf(x) n

(21.10) 6 61(x) - 1.

In the next section we shall supply illustrative examples to show how

other production functions (which are homogeneous) may be represented in this

extended Cobb-Douglas format. For the present, however, we observe that the

form on the right of (2.7) as specified by (2.8) - (2.9), may be used to express

any homogeneous function, and it also leads to a variety of important inter-

pretations and uses. 1/

'I/ncluding the zero functional which is satisfied by choosing A(x) u 0 and

adding an extra 6i(x) m I with all other 6i(x) - 0 as in (2.7). There is

no real trouble for h - 0 either since we need merely restate (2.7) in terms
of hf(x) to handle such cases. We do not undertake to develop this further,
however, since such functions are not ordinarily of interest in the economic
theory of production.



Hiereafter we shall refer to this as the "Extended Cobb-Douglas Foru?'.

We now exhibit one interpretation of the extended Cobb-Douglas function via

Theorem 2: For a production function f (x), homogeneous of degree h,

*and with continuous partial derivatives, the h6 i(x) in

the Extended Cobb-Douglas format are the partial output

elasticities of f(x).

Proof: By definition, the ith partial output elasticity is

(2.11) ,V (x Ef(x) . alnf(x)
Lix Ex~ i lnx

___f_ MX i
7f(X ) a X f(x)

-h6 L(x), by (2.9).

O.E.D.

We here observe that Ey/Ez represents the partial elasticity of y with respect

to z in the "elasticity calculus" provided by R. G. D. Al ii.-y Then we also

observe that we have the following:

Corollary 2.1: The total output elasticity w v (x) equals the degree

of homogeneity.

Proof:

(2.12) E W (x) mh6 L(x) -h
Li i

since 6 L (x) -1

O.E.D.

i/See [11.
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We further remark that these 8 i(x) are required to be non-negative, at least

in economic theory, which in turn implies that the f,, which are the

marginal productivities, are also non-negative when x, > 0, for all i. Our

representation in Theorem I thus carries us at least part of the way toward

explaining the success of the ordinary Cobb-Douglas functions in

econometric investigations. These functions have the 6 (x) . 6i, as

constants, which is to be expected when the partial output elasticities and

the f do not vary much in the range of observations. This is to say that

in such cases the ordinary Cobb-Douglas functions should give a good

approximation to the "true" production function whenever the latter is

homogeneous 1/

Parts of Professor Douglas' originally motivated search for "Laws of

Production" or what might better be called "Laws of Production and Distribution"

may now come into better view. See (141 and [19]. In terms of the preceding

development, we may now phrase the research question as follows: For f(x)

allowed to range over an entire class of admissible functions to select

some best fitting function by reference to specified criteria which will

thereby determine the 
6i(x) _> 0, Z 6 (x) i -- i.e.. the factor proportions

(and payments).

We shall return to this topic later in this paper. Here, however, we

want to-turn to the interpretation of A(x). From the start this term has been

regarded as a sort of catch-all -- "A repository of other things." See [14-

and [18]. As (2.8) makes clear, however, it contains a great deal of information

and may be used as part of a distributional measure in a way that relates it

to modern information theory.

.!/The situation we have exhibited in Theorem I is not restricted to economics.

Indeed it also helps to explain the success of techniques like dimensional
analysis in physics and engineering. The fact that equivalent expressions
for a physical quantity must agree dimensionally in powers of length, time,

mass, etc., may also be regarded as generalizations of the concept of
homogeneity.
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In fact, applying Theorem 2 to (2.8), we observe that

(2.13) A(z) - n

Hence A(x) denotes the geometric mean of the ratios of the marginal producti-

vities of the factors to their respective output elasticities for all factors.

Alternatively we can return to (2.8) and write

(2.14) in [hA(x)J -) 6i(x) in
i(X)

n

where "In" is the Napierian logarithm. Subtracting in f from each

side we obtain

n 61x
(2.15) in 6 - (x) in [ f

jTJ.

One can thus interpret Uhe logarithim of the ratio of hkA(x) to f as the
J

negative of the mean information for discrimination in favor of the hypothesis

given by the "6 distribution" against the hypothesis given by the "f / IN- fr3 J
distribution."

This kind of "distributional" interpretation will be used later, as in our

discussion of aggregation, but for the present it is of interest because of

interpretations that have also been employed to explain some of the Cobb-

Douglas properties and findings. E.g., we might especially note the use of

Pareto distributions, as discussed in Houthakker (25] and Tintner et. al. (38]

because of the fact that such distributions are also homogeneous.
2/

!/Cf. [29] p. 5.
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We next relate these developments, i.e., all of the developments in this

section, to the classical arithmetic-geometric mean inequality, Xiz.,

n n 8
(2.16) Li8p> Ii-i i-l '

where the It are non-negative-  but are otherwise arbitrary. The 6,, which

are "weights", must satisfy

n
(2.17) 6 , 6 > 0, all i

il 1

but are otherwise also arbitrary. As is well known, classically,-/ the

necessary and sufficient conditions for equality in (2.16) are

(2.18) 1 P2 "n

Now for f(x) homogeneous with continuous partial derivatives and fj, xi - 0,

all i, we can set 6 1 P - fixi > 0 and, using Euler's theorem, obtain

6

1 n fix
(2.19) hf (x) ZI f Xi 2fl (.-')

jw1 i i-i\, 6

which is in the standard form of the geometric-arithmetic mean inequality as

used in geometric programming.- In this form the necessary and sufficient

conditions for equality become

(2.20) - 22. - fn
61 62 6n

and this term-by-term relationship may be employed, as we shall later see, in

identifying the 61(x) which are optimal in the sense of cost minimizing choices.

I/Strictly speaking they should all be positive. See (171 pp. 4 if. This
will normally be the case in economic applications, however, end so we need
not concern ourselves on this point here.

./.ee (17], pp. 4 ff.

I'll 
F
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3.0 Some Illustrative Applications

Before proceeding further, we provide some simple illustrations.

Drawing on commonly employed production functions (which are also homogeneous)1-

and using only two factors of production, L - "Labor" and K - "Capital", we

apply theorem 1 to three such examples as follows:

(i) Linear Case: We write this as

(3.1) Q M a1K + a 2 L,

a production function which is homogeneous of

degree h-l and has infinite elasticity of sub-

stitution between the indicated factors. To

apply Theorem I we need

2 - at=f
2mK I fl

a f

)L 2 2

and

aIK

a 1 K + a 2 L

1-6 = 2
a1K + a2L

for use in

8 1-6(3.2) Q AK L

where

A /a 1 
6  -a2 

1 6

-/'Cf., the tabulation given in Intriligator [26, p. 187.
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By direct substitution in (3.2) we then ob tain

A QaiK +. 82L) 6(aK +a 2L) 1- 6  L 6

- K +

which, as wanted, is the same Q as in (3.1).

(ii) Ordinary Cobb-Douglas with output elasticities constant, viz.,

(3.3) Q -BKL

where at + It- gives the degree of homogeneity--

not necessarily 1.. Again we need,

c)K- K' 1~

for use in

A 6 1-6
(3.4) Q-AK L

with

6 of

-6
h

and

6 1-6() )



Direct substitution in (3.4) then produces

6 1-6

Rh T

M BKL I

which is (3.3). Q.E.D.

(iii) Constant Elasticity of Substitution, CES. Production Function:

This is usually written

(3.5) Q = B [a-+ (1l(a)LO'] 1

with the constants B > 0, 0 < ce < 1 and Ii > 0, Lhe de.gree

of homogeneity. The elasticity of substitution, a constant,

is then given by 1/(1+a).- Differentiating the above

expression partially for K and L we obtain

-L, -1

0111 = hn[-o + (l-cv)L-j K -a- 1

(l-ct)hB [01(0 + (l-0f)L-l L-a-I

ror use in

(3.6) Q AK L1-

1 The preceding two cases are obtainable from this one by means of specializing
assumptions on this elasticity. See, e.g. , (2) See also [2'4, pp. 86-88.

111 9 - - F . 9 

.
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where

6- OI

aC 0 + (1-a)Lc

and

1 (hB [Oi-c' (1-O)L-a -0 hB~ / laK-a + (l-a)L-II
Amj - /I (!K L/

Via direct substitution in (3.6), the extended Cobb-Douglas format,

1'

- B [0( + (l-cv)L", 0

which is the CES function represented by (3.5).

EVideiILiy, We Call got these functions and many more, iii fact any homo-

gecous function with continuous partiail dierivatives, via Theorem 1. We do

not pursue this further, however, So that We cast begitt maiking more pointed

interpretations via a series of specializing assumptions in the sections that

follow.
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4.0 Efficienc Frontiers and Exoansion aths

We utilize this section to cover certain preliminaries as follows. Let

rip a positive constant, represent the price of the ith factor of production

n
min E r x

i-I

(4.1) subject to f(x) -- qo

x >0

where q , also a constant, greater than zero, represents a stipulated minimal

amount which is to be produced via the production function f(x). I.e., the

problem is to minimize the cost of. producinR at least the stipulated amount,

q , by selecting the factor quantities xi  0, i-I. n under the given price

structure.

We shall assume f(x) is concave as well as positively homogeneous with

continuous partial derivatives I/ in the interior of the set X i (x: f(x) : 0, x > 0).

W' shall aiso assume the "Slater ctld i Lns' -/ for X. i.e., we shall

assuin. that there is some x' ", 0 such that f(x') 0 0. Because of our homogeneity

0assumption. this means that there is x" 0 such that f(x") q

Many of the production functions employed in economic analysis, e.g.,

the ordinary Cobb-Douglas or the CES functions,have partial derivatives which

become infinite at any x 0 a 0. They also often have the property that if f(#)>O

one must have >. Thus, for these cases (4.1) reduces to the problem

./Cf. ,e.g. , Henderson and Quandt [24,], p. 61.

!/Cf. [12].

p
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win r Ix
i-1 |

(4.2) subject to f(z) >q >0

in which one is sure that an optimum xa* ' 0 -- i.e., the optimum is taken on in

the interior of X. Therefore, the Kuhn-Tucker conditions on the existence of x*

and A* reduces to equalities rather than inequalities. Thereby, i.e., whenever

the optimum occurs at an interior point, regardless of the condition which assures

ir (e.g., f(x) > 0 implies x > 0) one has

(4.3) q*f(x*) - q .] 0

k* 0,

are necessary and sufficient for the optimality of x* in (4.2).

We note further that since r I > 0, all I, that )* • 0 and

(4.4) f(x*) - 40

Indeed,

ft n n
(4.5) .in. r X, rL,, *. f*x* . X*If(x*)

iI ii I Jai

- )*h qO0

where f* is the partial derivative of f(x) evaluated at x*. Thus

(4.6) X* - all i,

For the kinds of analyses we are about to undertake, it is usually assumed

that f(x) is concave, as well as homogeneous . and that for some z' we have f(x') > 0.

To clarify the consequences concerning the degree of homogeneity we nov prove,

• I
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Theorm 3: It (i) f(x) is positively haogeneous (11) concave

and (iii) for *ame xI, f(x') > 0, then 0 < h < 1.

Proof: First note that (i) implies f(O) - 0. By concavity,

(4.7) f(yx' + (1-Y)O) > yf(x') + (l-Y)f(O)

for 0 < y < 1. Hence, f(yx') .Yf(x'). Now since f(x)

is homogeneous of degree h this becomes

(4.8) Yhf(x ' ) _ yf(x').

Since f(x') ", 0, this given

h-i

and this is possible only if h < I. O.E.D.

Before proceeding to employ theue results in our subsequent development

we MigitL observe that they can be extended by relaxing smile of he .bove

assumptions such as, e.g., concavity. For example, if f(x) is not concave

lnit f(x) i T(f(x) ) is, where T(&) is any homoguneouu strictly isoione function

oe 0. our result. will apply to '(x) and can be Lrai.latedl Limediately back

to f(x). We do not pursue this here, however, because ye wish to make easy

contact with known empirical and theoretical results in economics and there-

fore reserve this more extended treatment for a subsequent paper.

Hereafter we shall aseume that our f(x) are positively homoieneous and

concave and that f(x) > 0 implies x > 0. We shall call a function satis-

fying these conditions a "proper production function" and proceed to use this

concept in the development of conditions for optimal expansion or contraction

of production in the folloving: First we substitute from (4.3) in Theorem 1

to obtain

. *, " L ,v ' * v ' U '
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Theorem 4: Let f(a) be any proper production function ws then

havs on the expanmton path,

(4.10) f(x*) -A* f1 (x) i

where

6*

(4.11) A*m a lhI*1

and

(4.12) 6* - * aij, £
i n

j Irj Xt
i-

with 6t, A* ad f(x*) denting respectively 6,

A and f(x) evaluated at x*. I.e., f(x*) is a

point on the efficiency frontier of f(x).

Thfq rh.eOr.'m, wifelh ij a rllv eirved, by -suhatitutLon from (.3)

In th orem 1, offers additional important Lnterargtatins to the cnmponmets

of f(x) when a firm produces optimally. First f(x*) characterises the
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minimal cost of production of the stipulated output level qO.i/ Also, since the

constants r i > 0 are the saw for each firm, a.&., for an economy in competitive

equilibrium,we also obtain a characterization of the production process which

will later be used to effect an aggregation in which the production functions

though proper, possibly differ in form from one firm to another.

These 6* when interpreted as in (2.26 then denote a "cost minimizingi
distribution" ior the cost of each factor in the production process, and this

obtains when the firw is on its efficiency frontier -- or expansion path --

while A* clearly reflects the way in which the optimal marginal productivities

are to be combined and then replaced by their corresponding unit prices.

We now draw some easy consequences for subsequent use via

Corollary 4.1: If f(x) is any proper production fmi-tion then

at the efficiency frontier,

n

(4.1[3) f(x-*) - , t,

where

(4.14) )* - r /f*

iiL

Proof of Corollary 4.1 follows directly from the aritimetic-geometric mean

inequaliLy.6 / This being fairly obvious we proceed to

-lAlternatively, f(x*) may be viewed as the maximal level output for a given
budget.

K/Alternatively, we can obtain (4.13) directly from the Kuhn-Tucker conditions
and Soler's theorem as in (2.1) ff.



TbeOr*i 5: Let f W) be any proper production function , as above,, and

let z0.9 z* be input vectors e~oyed to attain positive

outputs qo and q* at minissm total cost,

(4.15) r, a~ 80_A
r k xo 0 X~

if and only if th, choices x 0, x* are both on the

firm's cost-uininising expansion path.

Proof: Via the Kuhn-Tucker conditions in (4.3),

(4.16) -r f f~

k k k

and so, also,

(4.17) for - for -o0
1 k h i

Via Theorem 1, this gives

60 60

by seans of (4.12) and suitable cancellations. In the

sme vay we also obtain

(4.19)k- r M-0

I/'
if 3* is on the cost minimizing expansion path. Q.1,D.

.!/n the custossiry terminology of economics, x 0and x* are both on the locus
fomed from conditions of tangency between isecoets and isoqusta. See
Istriligator (261, p. 193.

9 % . . . .
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This now leads us naturally to consider the characterization in terms of

partial derivatives of production functions which may be represented in

Extended-Cobb Douglas form with their 6 constant:

Theorm 6: The 6 are constant (output) elasticities for

all x if and only if

(4.20) x -i '2 ii fi

0i .(x) " f(x) f(x)

and

(4.21) x~ -f f(x). 0

on Ix: hf(x) > 01 /0

andl / assuming the second partials, viz.,

f 2 f(x)
k m bx ix k

all exist for i.k-l...... n.

Proof: Referring to (2.9) in Theorem I we are in Ole situation

where 61 (x) ,f ixi/hf(x). We have 6 (x) - constant if

and only if its first partial derivatives vanish for

all x. Taking the derivatives with respect to xi we have

/The symbol 0 refers to the pty set.

SA
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ba +i )2 .(4.22) Lx) f(x) +

or

12 L
(4.23) Xi f ) m -

Taking the partial derivative with respect to zk

(4.24) U6 fkx ffkX

T3 " -h(x) hif(x)] 2 = 0

or

(4.25) x. f " ifk -0
i i L" f-(x)j

which proves the theorem.

From Theorem 5 it now follows that if 61 is constant, all i, then the

expansion path will be linear. In fact we viii then have A(x*) a constant --

cf. Theorem 4 -- which is the ordinary Cobb-Douglas function and the corres-

ponding f(x*) in Theorem 2 in homogeneous of degree 1. It follows that the

6* are output elasticities by Theorem 2 and, we may observe, X* then becomes

the "long run cost of production". All of the other usual conditions

and properties of these functions are then also present. See ileaderson and

Quandt [24], p. 85.1'/

,I/Sea also Marlowe (33].
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5.0 Aggregation

We now want to go from preceding results for an individual enterprise

to an aggregate of firms. We want to do this, however, not merely from the

standpoint of "pure" aggregation theory, but in a way that will enable us

to obtain insight into results from ordinarily employed statistical practices

in which, e.g., the data are all given in the form of sums of pertinent

inputs and outputs. Therefore, we return to (4.3) and write

(5.1) r1 i f *j
-i

where r. > 0, i=l,...,n, is the price of the ith factor, the same for each ofI

j=l,... ,m firms. For each such firm x| > 0 implies the above equality if the

star is to indicate an optimal solution and so also f:"J-Y 0 for cases of interest

ini economics.

hlere the term "optimal" refers to cost minimization, which means, as usual,

that the price of an added unit of factor must equal its contribution to the

marginal cost of production for any factor used in a positive amount, e.g. , for

conditions of competitive equilibrium.

This assumes, as already noted, that r. is the same for all firms but,

of course, this need not be true for k* or f J provided the equality indicated

in (5.1) obtains for each of the jIl,...,m firms. Although we will here-

after assu~me that the firms all have proper production functions, we will

also allow them to vary from firm to firm. Thus we may multiply both sides

of (5.1) by Xj and sum over all i and J to obtain

m n J n
(5.2) L..L ~r x 1 *
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or*

n M n
(5.3) ~r LX u.f*Jxe

i-i Ji - i i

i-i ii i-i jii ii

where f (X)* denotes the production function of firm j with degree of homogeneity

hji < 1 and input vector x- lp.Oxn

Now let

m
(5.4) x,-~ x~

denote the total amount of factor i used by these j-l,...,m firms. We can

then apply the arithmetic-geometric mean inequality to obtain

i-li i -i 7'

n
whecre 6. > 0, 6. - 1. We obtain equality wheni

(5.6) * 6 x
± n

i.e., when the cost minimizing choices of x are employed in the 61 See (2.l89)& (2.2

Letn denote the vectors and X* a matrix with x& forLetig i LJiIj j

its jth row, J-i,...,m we then have

Theorem 7: Let f j(x) J--1)...,mbe any proper production function,

then at the expansion path of the economy

n 8

...... ...



23

where

m n
(5.9) F(XW,hX) = X* h f (x!) .- r

6*
n iri)

(5.10) A*- 11

and

r
(5.11) 6* - il,...,n.

i n
r

In these economy- orindustry-wide models, we may expect 6* 0, all i
n

so that also, as in Theorem 1, 6 6* - I. Theorems 5 and 6 also
it-

continue to apply, of course, which means that the expansion path for this

economy or industry is

(5.12) 6 r xk - 6kr - o

and F(x*,h.X*) is of degree one at every point on this path. Furthermore,

if Theorem 6 also applies -- i.e., 6* is constant for every i -- this
i

expansion path is linear and (5.8) reduces to the ordinary Cobb-Douglas function.

Dropping the assumption of constant elasticities we can achieve simplicity

(for purposes of insight and understanding) in another way by reverting once

more to the two-factor case as in Section 4. From Theorem 7 we can characterize

the expansion path for an economy or industry via

(5.13) FQ_*,h .*) - A*K* L*

where

- (L*I, K*- CKCh, I,. Ii h

(5.14)
M is

K*m E * L*m n L*
Joi jal
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(5.15) A* (9.)8 * Q -*"

with

(5.16) 6* P * 1-6" L*
pK* + WL* pK* + L*

where we are using p to represent the price per unit "capital", and ' the

price per unit "labor".

In fact, substitution of the indicated expressions for A*, 6* and 1-6*

vn this expansion path produces

(5.17) F(L*,K*,h,_*) - PK* + wL*

directly from (5.13). This says that total output is equal to total value

added. Moreover, 6* and 1-6* as in (5.16) equals the share of each of these

factors in value added.

The latter coincides, we might explicitly note, with A. A. Walters' observation

that in most (cross-section) studies the coefficients of labor (i.e., its

exponents) in the Cobb-Douglas functions utilized, are "a close approximation

to the share of labour in value added"- and that "the sum of the factor

coefficients is at or near unity!' See the table below. Unlike Walters,

however, we do not conclude that this is the result of "an accounting convention

that all income must be allocated to one factor or another."' / We conclude

rather that' this suggests (in study after study) that the firms are on or

close to an optimal expansion path. The term "optimal", as throughout this

paper, continues to refer to cost minimization. Hence, we do not draw any

inference as to tfhe presence or absence of perfect competition or the presence

of exploitation, etc.-since such cost minimization is compatible with fixed

-/see [39], pp. 329-330. Sam also p. 37 in [41].

I/See also Levy and Simon (31.

A/See Bronfenbrenner 5 .and ( 4] and Rader r34].
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INTER-INDUSTRY PRoDUCTioN FUNCTIONS7
CROSS SE~CTION ESTIMATHS

Refer-Ycar Country Labhour Capital Stain
ence tut Si &I i2+as

1889 U.S.A. .51 .43 .94
1899 .62 .33
10904 .65 .31 ,35 Duls198
1909 .63 .34 *9
I1914 .61 .37 Al
19 19 .76 .25 1.01
19112 Australia .52 .47 .9
1922-3 .53 .49 .0OZ
I 926-7 -59 .34 , 93 Gunn an( I DomglaR(194 1)
1 934-5 .6.1 .36 1.00
1936-7 .49 .49 .08)
1910-11 Victoria .74 .25 .99 '

1923-4 .02 .31 .92 Gunat oga 14.
1927-8 .59 , .27 .861GunadDga(94.
1933-4 N. S. Wales .65 .34 .99 J
1937-8 S. Africa 1. w6 .32 ,.98 Browne (1943)

2. .615 .37 1.02
1923 Canada .48 .48 .9 ayan6ogas(93
1927 Adl~ .52 .9J8
1935 .5~0 .52 1.02 DayadIogls(93
1937 .43 .58 1.01)
I1938-O N. Zealand .461 .51 .97 WViliais (1945)
1924 ILK. (industry) .72 .18 ANW) 950
19130 .75 .13 . A8l8Xl90
1946 [ndia .66 .31 .97 Tcewari (1954)
1947 .57 .50 1.07 DuttL(1955)
1951 .59 .40 .99 Murti and Sastry (1957)
1909 U.S.A. (industry) .74 .32 1.06 Marscluik anti Andrews

(1944)

.!/Source: A. A. Walters t42.1. We are indebted to

A. A. Walters and to Econometricga, the journal of
the Econometric Society, for permission to reproduce
this table.
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prices and production quotas, e.g., such as might be imposed by a central

authority.

We have also left unattended the issues-revolving around a choice of

production functionsi' by the underlying firms and plants. Although the

notation in (2.8 ) and ( 2.9) ff. properly suggest that A(x) and the 6i(x)

are all to be estimatedwith x. and Q serving as the relevant input and

output data, we do not want to enter into questions of statistical estimation

and identification in this paper., On the other hand, we may make at least one

suggestion which flows naturally and easily from the above analysis by observing

that a choice of 6i# 6 for any i must produce

LA

(5.18) F(6*) > F(;)

where F is defined as in (5.13), since, by Theorem land its corollaries,

equality holds for each firm if and only if 6 = 6* all i and this is

evidently reflected in Theorem 4 as well.a
/

In view of the importance of these 6i choices we may single them out

in a way that also makes contact with other important recent conceptual

and methodological developments by introducing

A1 ^ 6* n ^ 6.
(5.19) a = log "' -= T log6

6 i 6
-16 1 i-I i

In modern statistical information theory, this is called the "information

discrimination function. Cf., e.g., Kullbak [30]. Here it might better be

called the "efficiency discrimination function" because, via the indicated inequality,

= - 0, if and only if 6i - 6* > 0 for every i.

I.e., we do not inquire as to whether the functions themselves also result
from optimal choices.

!/Cf. also Klein [28] for a comparable discussion of the conditions for
aggregation of Cobb-Douglas functions.
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6.0 Conclusion

We nov return to the issue of the generality of our Extended Cobb-Douglas

function, which has, we think, been exhibited in a variety of ways. Thus, for

instance, we showed how other functions, often used in economics, can be

represented in this form. Nevertheless, our representation theorem -- i.e.,

Theorem 1 -- is essentially that of a Cobb-Douglas form. Indeed, the relation-

ship of the ordinary Cobb-Douglas form to our general representation may be

likened to developments in other disciplines, too, where practitioners are

confronted with "actual" applications. A case in point is the use of "linear

lumped constant" circuit representation in electrical engineering and control

theory. An analyst will ordinarily use this approach to a valid approximation

with essential simplifications to obtain the major properties of a complex

system. Analogously our representation perniti us to go directly to a suitable

(ordinary) Cobb-Douglas function by specifying the 6 and A as constants.

Similarly the "lumping" of actual elements occurs through aggregation (e.g.,

across firms) and classification (across factorR or proi tc-s).

In fact we have now exhibited the Extended Cobb-Doula-i Function as

canonical for production theory. Concomitantly we have provided analytical

developments and interpretations which relate this canonical format to standard

economic constructs. Finally, we have also shown how to interpret a wide

range of empirical results in ways which are consistent with these constructs.

In this paper we have restricted our attention to the simplest and most

basic case of static production with a single output to be produced with a single

function / -- one to a firm or plant -- from factors which are acquired at

1 /Cf. [10] for possibilities which include varying functional forms over time.
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fixed prices per unit. The representation in Theorem I to evidently more

general than this, however, adadmits of numerous other extensions and

applications. In preparation therefore we have taken some pains to make

contact with other now and important disciplines such as geometric progrming

and its related theory. This sets the stage for other developments as well.

it seems best, however, to reserve those other developments for treatment

in their own right in separate papers.
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